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Figure S1 | Behavioral results from additional psychophysical tests

(A) To test whether information from both cues was combined behaviorally, we used
a psychophysical procedure in which two stimuli were presented sequentially, and
participants had to decide which had the greater depth. The visual stimuli consisted
random dot patterns (Main Fig. 2b) that depicted depth structure defined by: (1) a
difference in binocular disparity, (2) the congruent- and (3) the incongruent
combination of disparity and motion. The stimulus parameters (size, dot density,
motion speed etc.) matched the stimuli used for fMRI experiments. On each trial, a
‘test’ and a ‘comparison’ stimulus were shown sequentially for 1 s each in a random
order, with a 1 s interstimulus interval. The relative depth in the ‘comparison’ stimulus
was specified by disparity, while the depth in the ‘test’ stimulus could be specified by
disparity, or disparity and motion in combination (only the congruent case is
illustrated, but incongruent stimuli were also shown). By contrasting a given test
stimulus against a range of comparison stimuli, we obtained psychometric functions.
These expressed the perceptual likelihood that depth in the test stimulus exceeded
depth in the comparison stimulus— where depth is expressed in terms of the
perception of depth in the disparity ‘alone’ (i.e. conflicting) comparison stimuli.

(B) We found that participants (N = 8) reported greater depth when disparity and
motion congruently indicated depth differences. This is shown by the rightwards shift
in the orange psychometric function relative to the blue, baseline curve for the group
data (horizontal boxplots on the functions show the error associated with the point of
subjective equality (P.S.E.) of the group data). This shift indicated that cues were
integrated to informed depth percepts. We quantified this across subjects using the
P.S.E. (bar graphs show between-subjects mean based on fits to individual subjects’
data; error bars depict s.e.m.). The P.S.E. was reliably greater when motion and
disparity signaled the same depth structure (F1,7 = 21.14, P = 0.002). Note that this
does not suggest that cue fusion seeks to increase the magnitude of depth estimates
(i.e. adding more and more cues does not lead to greater and greater depth)- rather
bear in mind that the comparison stimuli contain cue conflicts, and thus the
perceptual interpretation of the comparison stimuli is biased (towards zero) away
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from the disparity-specified depth (e.g. 6 arcmin). (To appreciate this visually,
compare the illustrations of the test stimuli in part A, in which disparity—blue curve—
specifies the same depth in the two cases, but the perceptual estimate—purple curve
—is greater for the congruent stimulus.) Thus when contrasting conflicting single cue
stimuli against the congruent disparity and motion condition, depth for the congruent
stimulus exceeds the value specified by the ‘single’ cue disparity stimulus. In addition
to changing the P.S.E., the slopes of the psychometric functions were steeper for
congruent depth cues (F214 = 3.26, P = 0.035). This is shown by the between-
subjects mean slope bar graphs (error bars show s.e.m.), and is expected on the
basis that integration improves the reliability of depth estimates.

This influence on the P.S.E. and sensitivity was specific to congruent
combinations of cues (compare orange and red bar graphs). Specifically, incongruent
PSEs differed from congruent (P = 0.009) but not disparity alone (P = 0.401)
conditions; and the slope of the psychometric function was lower for incongruent
cues relative to congruent cues (P = 0.041), but no different compared to the
disparity alone condition (P = 0.398).
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Figure S2 | Percent signal change and composite data

(A) Percent signal change from fixation baseline across conditions. We computed the
percent fMRI signal change (%) for each condition relative to the fixation baseline
response for each participant and Region of Interest (ROIl). This was calculated from
the mean response of the 250 voxels used for classification in each ROI. Error bars
show between-subject s.e.m. (N = 20).

(B) Prediction accuracies for composite vs. congruent conditions. To evaluate the
idea that presenting two signals concurrently reduced measurement noise, we
generated a composite dataset that averaged together responses from ‘single’ cue
conditions. For each voxel, we averaged the fMRI response evoked under the
‘disparity’ and ‘motion’ conditions. We then ran multivoxel pattern analysis (MVPA)
using this composite data and compared decoding performance with that supported
by the fMRI signals evoked by the congruent disparity and motion condition. If the
two depth cues are represented independently in a cortical region, we might expect
no difference in the decoding performance between the composite and congruent
conditions. In contrast, if depth information from two different cues is integrated
optimally, noise will decrease, with the result that performance for the congruent case
will improve relative to the composite data. We found a significant interaction
between ROI and condition (Faee = 2.491, P = 0.04), with post-hoc testing revealing
that decoding performance in V3B/KO for the congruent case was significantly above
that obtained for the composite data. This suggests that simple measurement noise
cannot account for our findings, and supports an interpretation based on cue
integration. Differences in other areas were not significant based on correction for
multiple comparisons.

(C) Functional signal to noise ratios (fSNR). Functional signal to noise values for the
250 voxels used for classification per ROI. fSNR was defined as:
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SNR _ xStimulation - xFixation

STD(xStimulation&Fixation )

where Fsimulaion ~ *rivaiion represents the difference between the mean response to the

stimuli and response to fixation, and STD(Xgumutations: Fiation) the standard deviation

across all stimulus conditions and fixation. The pattern of SNR does not correlate
with classification accuracy.
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Figure S3 | Subjective assessment of eye vergence

(A) The behavioral task during scanning consisted of a subjective assessment of eye
vergence task (Popple et al. 1998). A small vernier target was briefly (250 ms)
flashed to one eye, and participants judged its location relative to the upper vertical
nonius line (presented to the other eye). We fit the proportion of “target is to the right
of the upper nonius line” responses as a function of the target’s displacement. These
data were fit separately for near and far positions in each experimental condition.

(B) The mean bias term (P.S.E.) for the fits to the psychophysical data under each
condition and for near and far positions. Error bars show the between-subjects s.e.m.
(N = 20). A repeated-measures ANOVA showed no main effect of condition (F238< 1,
P = 0.45) or depth position (F1,19< 1, P = 0.73) and no interaction (F23s = 1.38, P =
0.26). These data suggest that participants were able to maintain vergence at the
fixation point well as mean bias is very close to zero.

(C) The mean slope term for fits to the psychophysical data under each condition for
near and far positions. Error bars show the between-subjects s.e.m. (N = 20). A
repeated-measures ANOVA showed no main effect of condition (F1429< 1, P =
0.59) or depth position (F1,19= 1.98, P = 0.18) and no interaction (F2,38< 1, P = 0.40).
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Figure S4 | Eye movement recordings

We recorded horizontal eye-movements from four subjects at a high resolution
(stated accuracy < 0.25 degrees visual angle) using a monocular limbus eye-tracker
(CRS Ltd, Rochester, UK) that was placed under the spectral interference filters
inside the bore of the magnet. This eye tracker is the only system compatible with the
dual-projector system we used for binocular presentation, as video-based systems
cannot reliably track the eye through the spectral comb filters. No significant
differences were observed across conditions and experiments in the mean eye
position (F26 < 1, P = 0.86), number of saccades (F26 < 1, P = 0.52) and saccade
amplitude (F26= 3.44, P=0.10).

Traces of mean eye position aligned to the start of each trial showed only
small deviations from fixation and no systematic differences between conditions.
Despite technical limitations (that is, it was only possible to measure horizontal
position in one eye), these results suggest that observers could maintain fixation
throughout each run. Using trial-by-trial eye movement traces, we trained an SVM to
associate patterns of eye movement with the ‘near’ or ‘far’ position of the viewed
stimulus. We assessed the prediction performance of the SVM based on these eye
position signals, and found that performance did not differ significantly from chance
(0.5), making it unlikely differences in eye position account for our results.
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Figure S5| Simulation results — effects of SNR and cue reliability

(A) To confirm our experimental logic, we performed simulations of voxel responses
that were decoded by a Support Vector Machine (SVM). We simulated a population
of ‘depth columns’, each of which had a mean depth preference and a fixed tuning
width. Columns had a spatial sawtooth structure whose phase progression was
randomly perturbed to create jittered maps following Kamitani and Tong (2005).
Columns could respond to disparity, motion, or combined signals and thereby reduce
their tuning variability following maximum likelihood estimation. The default column
tuning profiles were assumed to be Gaussian with o = 12 arcmin. The stimulus was
represented by a Gaussian (o = 0.2 arcmin). We simulated the response of these
individual columns when presented with depth structures (+ 6 arcmin) defined by
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disparity, motion and these signals concurrently (that is, convolution of the probability
density functions associated with the stimulus and the tuning profile of the column).
These column responses were subject to an expansive—compressive saturating non-
linearity in their response following the approach of Boynton, Demb, Glover & Heeger
(1999). Column responses were subject to ‘neural noise’ in the form of an added
random value sampled from a Gamma distribution (k = 9, 6 = 0.05 by default).

To calculate voxel responses, we averaged the responses of individual
columns that were sampled by a coarser scale voxel grid (1.5 mm length, matching
the fMRI scans). We assumed that each voxel sampled approximately half a spatial
period of the underlying depth map (one columnar cycle was set to 3.0 mm) based
on scaling for human cortex relative to disparity representations in macaque MT
(DeAngelis & Newsome, 1999). These aggregated column responses were then
subjected to ‘voxel noise’ in the form of random values sampled from a normal
distribution (o = 0.5 by default). The added voxel noise had two components — one
was a (quasi) unique noise value; the other was a correlated component common to
each voxel at a given time point (i.e. to reflect global fluctuations in fMRI noise across
time). The ratio of the correlated and random noise was fixed to 1:9 for all the
simulations.

Neural and fMRI noise parameters used in the simulations were carefully
selected so that the signal-to-noise ratios (SNRs) of the final voxel responses
matched the empirical fMRI data. Neural SNR, voxel SNR and functional SNR
(fSSNR) ratio were separately defined following the formula described below.

neural SNR = mean(Aneumlrespanse)
neural response & noise
STD(A,pyatrey )
voxe l SNR - mean (Aw)xe/ response Aneura/ noise)
voxel response & voxel noise
STD(A )
ﬁNR — mean (Avoxel response )
S D (Avoxel response &voxel m)ise)

A indicates response amplitude of each source. Simulated data with an fSNR of 0.93
matched with the SNR estimated from the fMRI data in V3B/KO. This value was used
for simulations, unless specified otherwise.

We simulated responses of voxels that contained (i) populations of columns
that fused information from disparity and motion, and (ii) voxel responses that
contained co-located but independent populations (i.e. voxel responses were driven
by populations that responded to only disparity or only motion). We organized maps
such that there was a similar topographical structure for the two depth cues. The
process of sampling from these maps entailed that the distribution of column
selectivities differed for the two cues for a given voxel.

We simulated 250 voxels with 8 runs of 24 patterns for both near and far
presentations for each condition. These numbers matched fMRI data acquisition. The
simulated patterns were then sent to a linear SVM classifier using leave-one-out
cross validation procedures. The SVM classifications were repeated 20 times,
simulating 20 participants in the main fMRI experiment, and then averaged.

(B) We manipulated SNRs of simulated fMRI responses to evaluate how the noise
levels affected our results. Specifically, we used a range of neural (0.4, 0.9, 1.8, 4.5)
and voxel (0.6, 0.9, 1.2, 1.5) SNRs, that together defined the functional SNR (ranging
from 0.74 to 1.42). The bar graphs show performance for Fused and Independent
populations for the congruent-cue stimulus. Performance for ‘single’ cue conditions
was also calculated (separately for the two different populations) to generate the
quadratic summation prediction (red line on the graphs). The simulations reveal that
fused populations always exceed the quadratic summation prediction. Independent
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populations may slightly surpass the quadratic summation prediction in cases of low
noise. This is possibly due to partial correlations emerging between voxels when
voxel responses are dominated by column responses (i.e. low levels of independent
late noise); that is, the same voxel set is used for each condition and these voxels
are assumed to contain columns selective for both cues, where cue maps have a
correlated topography. In consequence, the summation test can establish a minimum
bound for fusion, but does not preclude independent populations. For the remainder
of the simulations we used a neural SNR of 1.8, and a voxel SNR of 0.90, giving an
fSNR of 0.93 that matched empirical data.

(C) We tested how classification accuracies changed when the disparity and motion
cue reliabilities differed. We changed the standard deviation of column response to
motion so that it was 1.0, 2.0, and 4.0 times larger than of disparity, while the
variance of an integrated response was held constant. While this manipulation affects
decoding performance considerably for the independent population model,
performance of a fused mechanism is little affected.
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Figure S6 | Simulation results — effects of spatial organization

(A) We tested how the relative organization of disparity and motion maps might
interact within a voxel, by simulating two extreme scenarios: complete correlation
and complete independence (correlation between maps = 0). Color-coded bars show
the peak preference of the depth columns.

(B) We tested how maps from disparity and motion are sampled by individual voxels.
We simulated different scales of sampling from each map to produce the pattern of
column responses that are aggregated to produce the voxel response. Sampling
widths were defined by a sawtooth structure whose phase progression was randomly
perturbed— this is illustrated by the ‘cue selectivity’ color bar.

(C) Results of simulations for independent and correlated neuronal populations for
the case where disparity and motion are independently represented. For the two
scenarios, we present a grid of results where we varied systematically the spatial
period of depth maps (global y-axis) and the spatial period of the cue selectivity
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(global x-axis). These manipulations are shown by schematics next to the axes; note
the depth maps cycles are illustrated as not jittered for clarity of presentation;
however, the maps were jittered for the simulations. The results in each cell of the
grid show decoding performance for the congruent and incongruent conditions, and
performance in the transfer test. It is readily appreciated that for both correlated and
independent scenarios, independent populations do not give rise to reliable
differences between congruent and incongruent cues, or produce reliable between-
cue transfer effects, unlike fused representations (Main Fig. 6).

We varied the spatial scale of the depth maps around the value of 3 mm
generally used for the simulations. In particular, we considered a higher spatial
frequency (1.5 mm, approximately equivalent to disparity maps in the macaque) and
two lower spatial frequencies (6, 12 mm). As the scale of the maps increases, voxels
obtain a more homogenous sample of columnar selectivities. However, even with
very large-scale representations (i.e. 12 mm maps that would take up about half the
ROI; mean maximum diameter of V3B/KO in six participants is 27.3 = 2.3 mm), we
do not observe reliable congruent vs. incongruent differences or transfer. We also
changed the width of the maps of cue selectivity from the default value of 0.825 mm
(a conservative estimate based on data for ocular dominance and orientation in V1
Yacoub et al, 2008; Kriegeskorte et al, 2010) to higher scale representations (0.345,
0.075 mm). As cue selectivity scale decreases, a voxel's sample of columnar
responses becomes more similar. Even with unrealistically high interdigitation of
individual cues, independent populations do not give rise to patterns of performance
associated with fusion.
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Figure S7 | The organization of weighted voxels within V3B/KO

The V3B/KO region of interest (white outline) showing the spatial location of voxels
used by the SVM learning algorithm (color coded by the weight given to the voxel).
Portions of the dorsal and lateral visual cortex are shown for 6 participants on
flattened representations of each hemisphere. These maps were created using the
same approach as the global maps illustrated in Main Fig. 3. It is evident that there is
no consistent spatial clustering in the voxels used by the SVM, as might be expected
if there were two distinct representations (i.e. V3B vs. KO) within the region of
interest we denote as V3B/KO.
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